Skip to contents

Traverses the tree to find all leaf nodes (questions) and compiles their key attributes into a single, tidy data frame. This is useful for getting a complete overview of the analysis state or for creating custom reports.

Usage

get_questions(tree)

Arguments

tree

The data.tree object to be summarised.

Value

A data.frame with one row for each leaf node and the following columns: name, question, answer, confidence (on a 0-5 scale), and influence_index.

Examples

# Load the example 'ethical' dataset
data(ethical)

# Build and initialise the tree object
ethical_tree <- load_tree_df(ethical)
ethical_tree <- update_tree(ethical_tree)

# Get the summary data frame of all questions
questions_df <- get_questions(ethical_tree)

# Display the first few rows
head(questions_df)
#>   name
#> 1 FIN1
#> 2 FIN2
#> 3 FIN3
#> 4 FIN4
#> 5 FIN5
#> 6 ENV1
#>                                                                     question
#> 1                      Company demonstrates consistent, high revenue growth.
#> 2               Company maintains a high net profit margin for its industry.
#> 3                  Company holds a dominant or rapidly growing market share.
#> 4                        Debt-to-Equity ratio is below the industry average.
#> 5                      Company generates strong and positive free cash flow.
#> 6 Carbon emissions (Scopes 1 & 2) are verifiably below the industry average.
#>   answer confidence influence_if_true influence_if_false influence_index
#> 1     NA         NA        0.12500000          0.3333333       0.4583333
#> 2     NA         NA        0.12500000          0.3333333       0.4583333
#> 3     NA         NA        0.12500000          0.3333333       0.4583333
#> 4     NA         NA        0.06250000          1.0000000       1.0625000
#> 5     NA         NA        0.06250000          1.0000000       1.0625000
#> 6     NA         NA        0.08333333          0.5000000       0.5833333